271 | 4 | 34 |
下载次数 | 被引频次 | 阅读次数 |
利用2022年9月嘉兴市光化学站小时分辨率的挥发性有机物(volatile organic compounds,VOCs)和臭氧(O3)数据,分析了O3和VOCs的污染特征;采用基于观察数据的(observation-based model,OBM)模型,分析嘉兴市O3敏感性;并通过正定矩阵因子分析(positive matrix factorization,PMF)模型进行了环境VOCs来源解析研究。结果表明:高温(28.8~33℃)、低湿(69%~74%)、小风(1.4~2.0 m/s)等不利的气象条件有利于O3浓度升高。嘉兴市VOCs组分含量烷烃(6.7×10-9)>芳香烃(5.0×10-9)>烯烃(1.7×10-9)>炔烃(0.6×10-9),臭氧生成潜势(ozone formation potential,OFP)芳香烃(74.0μg/m3)>烯烃(19.8μg/m3)>烷烃(14.1μg/m3)>炔烃(0.6μg/m3)。9月份嘉兴整体处于过渡区,但在中度污染天时多为NOx控制区。结合VOCs来源解析,北部工业区站主要为机动车排放(34%)、油品挥发(25%)、甲苯源(22%)、溶剂使用(9%)、植物排放(6%)和石化工艺过程(4%);气象观测台站VOCs主要来源为机动车排放(30%)、液化石油气(25%)、甲苯源(18%)、石化工艺过程(16%)、溶剂使用(7%)和植物排放(4%)。嘉兴市秋季应以VOCs和NOx协同控制为主,并加大烯烃和芳香烃相关排放源的管控力度。
Abstract:Using the hourly data of volatile organic compounds (VOCs) and ozone (O3) from Jiaxing Photochemical Station in September 2022,this paper analyzed the pollution characteristics of ozone and VOCs.The OBM (observation-based model) was used to analyze the ozone sensitivity of Jiaxing City.The source of the environmental VOCs was studied by positive matrix factor analization (PMF).The results show that the adverse meteorological conditions,such as high temperature (28.8~33℃),low humidity (69%~74%) and low wind (1.4~2.0 m/s),were conducive to the increase of O3concentration.For Jiaxing VOCs concentrations,alkane component (6.7×10-9)>aromatics hydrocarbons (5.0×10-9)>olefin (1.7×10-9)>alkynes (0.6×10-9),and for ozone formation potential (OFP),aromatic hydrocarbons (74.0μg/m3)>olefin (19.8μg/m3)>alkane (14.1μg/m3)>alkynes (0.6μg/m3).Jiaxing was in transition zone as a whole in September,but mostly controlled by NOxin moderately polluted days.The main VOCs sources in the northern industrial zone were vehicle emission (34%),oil volatilization (25%),toluene source (22%),solvent use (9%),petrochemical process (4%) and plant emission (6%).The main sources of VOCs in meteorological observation station were vehicle emission (30%),liquefied petroleum gas (25%),toluene source (18%),petrochemical process (16%),solvent use (7%) and plant emission (4%).Jiaxing should focus on the collaborative control of VOCs and NOxin autumn,and strengthen the control of olefin and aromatic hydrocarbon emission sources.
[1]姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.JIANG H, CHANG H M. Analysis of China’s ozone pollution situation, preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582.(in Chinese)
[2]齐一谨,王玲玲,倪经纬,等.郑州市夏季大气VOCs污染特征及来源解析[J].环境科学,2022,43(12):5429-5441.QI Y J, WANG L L, NI J W, et al. Characteristics and source apportionment of ambient summer volatile organic compounds in Zhengzhou, China[J].Environmental Science,2022,43(12):5429-5441.(in Chinese)
[3]张盛华,吕柏霖,孙亚刚,等.西安西南郊“夏防期”大气VOCs污染特征及来源解析[J].环境科学学报,2022,42(9):364-371.ZHANG S H, LYU B L, SUN Y G, et al. Analysis of atmospheric VOCS pollution characteristics and sources in the southwest suburbs of Xi’an during the“summer prevention period”[J]. Acta Scientiae Circumstantiae,2022,42(9):364-371.(in Chinese)
[4]陈纯,李嘉鑫,廉洁,等.河南省典型炭素企业VOCs排放特征及臭氧生成潜势分析[J].环境科学学报,2022,42(11):383-394.CHEN C, LI J X, LIAN J,et al.Analysis of VOCs emission characteristics and ozone formation potential of typical carbon enterprises in Henan Province[J]. Acta Scientiae Circumstantiae,2022,42(11):383-394.(in Chinese)
[5]郑欢,毛东,解梦怡,等.西安市某工业园夏季VOCs浓度特征及O3、SOA生成潜势[J].中国环境监测,2021,37(6):50-61.ZHENG H, MAO D, XIE M Y, et al. Characteristics of VOCs and formation potential of O3and SOA in an industrial zone in Xi’an in summer[J].Environmental Monitoring in China,2021,37(6):50-61.(in Chinese)
[6]李泱,常莉敏,吕沛诚,等.兰州市大气臭氧生成的敏感性分析及其前体物减排对策建议[J].环境科学学报,2021,41(5):1628-1639.LI Y, CHANG L M, LYU P C, et al. Sensitivity analysis of atmospheric ozone formation and its precursors emission reduction countermeasures in Lanzhou City[J].Acta Scientiae Circumstantiae,2021,41(5):1628-1639.(in Chinese)
[7]李凯,刘敏,梅如波.泰安市大气臭氧污染特征及敏感性分析[J].环境科学,2020,41(8):3539-3546.LI K, LIU M, MEI R B. Pollution characteristics and sensitivity analysis of atmospheric ozone in Tai’an City[J].Environmental Science,2020,41(8):3539-3546.(in Chinese)
[8] UNGER N, BOND T C, WANG J S, et al. Attribution of climate forcing to economic sectors[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3382-3387.
[9] ANENBERG S C, MILLER J, MINJARES R, et al. Impacts and mitigation of excess diesel-related NOxemissions in 11 major vehicle markets[J]. Nature,2017,545(7655):467-471.
[10] FENG Z Z, KOBAYASHI K, LI P, et al. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering[J].Atmospheric Environment,2019,217:116945.
[11] LIM C C, HAYES R B, AHN J, et al. Long-term exposure to ozone and cause-specific mortality risk in the United States[J].American Journal of Respiratory and Critical Care Medicine,2019,200(8):1022-1031.
[12]李一丹,尹沙沙,张瑞芹,等.郑州市某城区冬季不同污染水平大气VOCs特征及源解析[J].环境科学,2020,41(8):3500-3510.LI Y D, YIN S S, ZHANG R Q, et al. Characteristics and source apportionment of VOCs at different pollution levels during the winter in an urban area in Zhengzhou[J]. Environmental Science,2020,41(8):3500-3510.(in Chinese)
[13]林燕芬,段玉森,高宗江,等.基于VOCs加密监测的上海典型臭氧污染过程特征及成因分析[J].环境科学学报,2019,39(1):126-133.LIN Y F, DUAN Y S, GAO Z J, et al. Typical ozone pollution process and source identification in Shanghai based on VOCs intense measurement[J].Acta Scientiae Circumstantiae,2019,39(1):126-133.(in Chinese)
[14]张栋,于世杰,王楠,等.郑州市冬季VOCs污染特征、来源及健康风险评估[J].环境科学学报,2020,40(8):2935-2943.ZHANG D, YU S J, WANG N, et al. Characteristics,sources and health risk assessment of ambient VOCs in winter of Zhengzhou[J]. Acta Scientiae Circumstantiae,2020,40(8):2935-2943.(in Chinese)
[15]孟祥来,孙扬,廖婷婷,等.北京市城区夏季VOCs变化特征分析与来源解析[J].环境科学,2022,43(9):4484-4496.MENG X L, SUN Y, LIAO T T, et al. Characteristic analysis and source apportionment of VOCs in urban areas of Beijing in summer[J].Environmental Science,2022,43(9):4484-4496.(in Chinese)
[16] WEI W, LV Z F, CHENG S Y, et al. Characterizing ozone pollution in a petrochemical industrial area in Beijing,China:A case study using a chemical reaction model[J].Environmental Monitoring and Assessment,2015,187(6):377.
[17] GENG F H, TIE X X, XU J M, et al. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China[J].Atmospheric Environment,2008,42(29):6873-6883.
[18]金丹.上海城郊夏季大气VOCs在臭氧生成中的作用[J].环境科学,2022,43(1):132-139.JIN D. Role of atmospheric VOCs in ozone formation in summer in Shanghai suburb[J]. Environmental Science,2022,43(1):132-139.(in Chinese)
[19] WANG X S, ZHANG Y H, HU Y T, et al. Decoupled direct sensitivity analysis of regional ozone pollution over the Pearl River Delta during the PRIDE-PRD2004 campaign[J]. Atmospheric Environment,2011,45(28):4941-4949.
[20] MARTIEN P T, HARLEY R A, MILFORD J B, et al.Evaluation of incremental reactivity and its uncertainty in Southern California[J]. Environmental Science&Technology,2003,37(8):1598-1608.
[21] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air&Waste,1994,44(7):881-899.
[22] HUI L R, LIU X G, TAN Q W, at al. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China[J]. Science of the Total Environment,2019,650:2624-2639.
[23] GUAN Y N, WANG L, WANG S J, et al. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China[J]. Journal of Environmental Sciences,2020,97:25-34.
[24] SONG G B, LIU B S, DAI Q L, et al. Temperature dependence and source apportionment of volatile organic compounds(VOCs)at an urban site on the North China plain[J].Atmospheric Environment,2019,207:167-181.
[25]韩萌,卢学强,冉靓,等.天津市城区夏季VOCs来源解析[J].环境科学与技术,2011,34(10):76-80.HAN M, LU X Q, RAN L, et al. Source apportionment of volatile organic compounds in urban Tianjin in the summer[J]. Environmental Science&Technology,2011,34(10):76-80.(in Chinese)
[26] WANG H L, CHEN C H, WANG Q, et al. Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement[J].Atmospheric Environment,2013,80:488-498.
[27]梁昱,刘禹含,王红丽,等.基于主成分分析的上海春季近地面臭氧污染区域性特征研究[J].环境科学学报,2018,38(10):3807-3815.LIANG Y, LIU Y H, WANG H L, et al. Regional characteristics of ground-level ozone in Shanghai based on PCA analysis[J].Acta Scientiae Circumstantiae,2018,38(10):3807-3815.(in Chinese)
基本信息:
DOI:10.19478/j.cnki.2096-2347.2023.02.05
中图分类号:X51
引用信息:
[1]李莉,熊传芳,张颖龙等.嘉兴市秋季臭氧浓度变化特征及前体物VOCs的来源解析[J].三峡生态环境监测,2023,8(02):36-42.DOI:10.19478/j.cnki.2096-2347.2023.02.05.
基金信息:
浙江省生态环境科研和成果推广项目(2022HT0021)